Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 42
Filtrar
1.
Ann Bot ; 133(1): 131-144, 2024 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-38079203

RESUMO

BACKGROUND: The unprecedented influence of human activities on natural ecosystems in the 21st century has resulted in increasingly frequent large-scale changes in ecological communities. This has heightened interest in understanding such changes and effective means to manage them. Accurate interpretation of state changes is challenging because of difficulties translating theory to empirical study, and most theory emphasizes systems near equilibrium, which may not be relevant in rapidly changing environments. SCOPE: We review concepts of long-transient stages and phase shifts between stable community states, both smooth, continuous and discontinuous shifts, and the relationships among them. Three principal challenges emerge when applying these concepts. The first is how to interpret observed change in communities - distinguishing multiple stable states from long transients, or reversible shifts in the phase portrait of single attractor systems. The second is how to quantify the magnitudes of three sources of variability that cause switches between community states: (1) 'noise' in species' abundances, (2) 'wiggle' in system parameters and (3) trends in parameters that affect the topography of the basin of attraction. The third challenge is how variability of the system shapes evidence used to interpret community changes. We outline a novel approach using critical length scales to potentially address these challenges. These concepts are highlighted by a review of recent examples involving macroalgae as key players in marine benthic ecosystems. CONCLUSIONS: Real-world examples show three or more stable configurations of ecological communities may exist for a given set of parameters, and transient stages may persist for long periods necessitating their respective consideration. The characteristic length scale (CLS) is a useful metric that uniquely identifies a community 'basin of attraction', enabling phase shifts to be distinguished from long transients. Variabilities of CLSs and time series data may likewise provide proactive management measures to mitigate phase shifts and loss of ecosystem services. Continued challenges remain in distinguishing continuous from discontinuous phase shifts because their respective dynamics lack unique signatures.


Assuntos
Ecossistema , Humanos , Fatores de Tempo
3.
J Phycol ; 58(1): 92-104, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34612512

RESUMO

The kelp, Ecklonia radiata, is an abundant subtidal ecosystem engineer in southern Australia. Density-dependent changes in the abiotic environment engineered by Ecklonia may feedback to affect reproduction and subsequent recruitment. Here, we examined: 1) how the reproductive capacity of Ecklonia individuals in the field (zoospores released · mm-2 reproductive tissue) varied with adult density and time, and 2) how the recruitment of microscopic gametophytes and sporophytes was influenced by zoospore density at two times. Zoospore production did not vary with adult density, with only one month out of ten sampled over a 2-y period showing a significant effect of density. However, zoospore production varied hugely over time, being generally highest in mid-autumn and lowest in mid-late summer. There were strong effects of initial zoospore density on gametophyte and sporophyte recruitment with both a minimum and an optimum zoospore density for sporophyte recruitment, but these varied in time. Almost no sporophytes developed when initial zoospore density was <6.5 · mm-2 in spring or <0.5 · mm-2 in winter with optimum densities of 90-355 · mm-2 in spring and 21-261 · mm-2 in winter, which resulted in relatively high recruitment of 4-7 sporophytes · mm-2 . Sporophyte recruitment declined at initial zoospore densities >335 · mm-2 in spring and >261 · mm-2 in winter and was zero at very high zoospore densities. These findings suggest that although adult Ecklonia density does not affect per-capita zoospore production, because there is a minimum zoospore density for sporophyte production, a decline in population-level output could feedback to impact recruitment.


Assuntos
Kelp , Phaeophyceae , Ecossistema , Reprodução , Estações do Ano
4.
Mar Environ Res ; 171: 105450, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34543878

RESUMO

Ecosystem engineering kelp forms habitat and influences associated communities by altering abiotic conditions. These conditions can also affect the engineer's own demographic rates but the mechanisms underpinning these feedbacks are not well known. Here, we tested the interactive effects of three abiotic factors engineered by the Australasian kelp Ecklonia radiata (light, water flow and scour) on the early survivorship and growth of its outplanted microscopic recruits. After six weeks, recruit survivorship was high in the absence of scour and low light (2-3 times higher than when scour was present) and under low water flow-ambient light conditions. Growth of sporophytes was strongly related to light, with recruits under ambient light approximately four times larger after six weeks. Overall, reduced scour (for survivorship) and ambient light (for growth) appear crucial for maximising E. radiata recruitment suggesting a healthy forest can provide microenvironments to enhance survivorship while gaps in the canopy enhance growth.


Assuntos
Kelp , Phaeophyceae , Ecossistema , Florestas , Água
5.
Glob Chang Biol ; 27(9): 1692-1703, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33629799

RESUMO

Globally, collapse of ecosystems-potentially irreversible change to ecosystem structure, composition and function-imperils biodiversity, human health and well-being. We examine the current state and recent trajectories of 19 ecosystems, spanning 58° of latitude across 7.7 M km2 , from Australia's coral reefs to terrestrial Antarctica. Pressures from global climate change and regional human impacts, occurring as chronic 'presses' and/or acute 'pulses', drive ecosystem collapse. Ecosystem responses to 5-17 pressures were categorised as four collapse profiles-abrupt, smooth, stepped and fluctuating. The manifestation of widespread ecosystem collapse is a stark warning of the necessity to take action. We present a three-step assessment and management framework (3As Pathway Awareness, Anticipation and Action) to aid strategic and effective mitigation to alleviate further degradation to help secure our future.


Assuntos
Recifes de Corais , Ecossistema , Regiões Antárticas , Biodiversidade , Mudança Climática , Humanos
6.
J Phycol ; 57(2): 664-676, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33406291

RESUMO

Canopy-forming macroalgae form the basis of diverse coastal ecosystems globally. The fucoid Hormosira banksii is often the dominant canopy-forming macroalga in the temperate intertidal of southern Australia and New Zealand, where it is commonly associated with an understory of coralline turf. Hormosira banksii is susceptible to both natural and anthropogenic disturbance and despite its abundance, few studies have examined the demography of this important species. This study determined the demographic response of H. banksii to different gradients of disturbance to both its canopy and to the understory coralline turf. We established plots in which the density of H. banksii and/or understory coralline turf was manipulated in a pulse perturbation to simulate a disturbance event. The manipulated plots contained eight treatments ranging from 100% removal of H. banksii to 100% removal of the understory coralline turf. We then measured recruitment and followed individual recruits for up to 18 months to determine growth and survivorship. We found that H. banksii recruitment was seasonally variable throughout the experiment and highest over summer, survivorship of recruits was generally high, and the species was slow-growing and long-lived. Moreover, the level of disturbance did not seem to affect recruitment, growth, or survivorship and post-recruitment mortality was independent of H. banksii density. In this system, it appears that H. banksii is a relatively long-lived perennial species whose demography is density-independent which appears to allow recovery from disturbance.


Assuntos
Phaeophyceae , Alga Marinha , Demografia , Ecossistema , Nova Zelândia
7.
Mar Environ Res ; 161: 105127, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32889445

RESUMO

As foundation species, kelp support productive and species rich communities; however, the effects of kelp structure on mobile species within these complex natural systems are often difficult to assess. We used artificial reefs with transplanted kelp to quantify the influence of kelp patch size and density on fish assemblages including the arrival of recruiting cryptobenthic species. Large patches with dense kelp supported the highest abundance, species richness, and diversity of fishes, with the addition of dense kelp tripling biomass and doubling richness. The abundance of recruits in artificial collectors declined with patch size and was halved on reefs with sparse kelp compared to reefs with dense kelp or no kelp. These results highlight the importance of dense kelp cover in facilitating biodiversity and indicate that kelp addition could support the recovery of degraded coastal ecosystems. Kelp also apparently drives complex interactions affecting the recruitment/behaviour of some cryptobenthic species.


Assuntos
Kelp , Animais , Biodiversidade , Biomassa , Recifes de Corais , Ecossistema , Peixes
8.
Ecol Appl ; 30(3): e02065, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-31872512

RESUMO

Characterizing the spatial distribution and variation of species communities and validating these characteristics with data from the field are key elements for an ecosystem-based approach to management. However, models of species distributions that yield community structure are usually not linked to models of community dynamics, constraining understanding and management of the ecosystem, particularly in data-poor regions. Here we use a qualitative network model to predict changes in Antarctic benthic community structure between major marine habitats characterized largely by seafloor depth and slope, and use multivariate mixture models of species distributions to validate the community dynamics. We then assess how future increases in primary production associated with anticipated loss of sea-ice may affect the ecosystem. Our study shows how both spatial and structural features of ecosystems in data-poor regions can be analyzed and possible futures assessed, with direct relevance for ecosystem-based management.


Assuntos
Ecossistema , Camada de Gelo , Regiões Antárticas , Oceanos e Mares
9.
Philos Trans R Soc Lond B Biol Sci ; 374(1768): 20180186, 2019 03 18.
Artigo em Inglês | MEDLINE | ID: mdl-30966966

RESUMO

Climate change is leading to shifts in species geographical distributions, but populations are also probably adapting to environmental change at different rates across their range. Owing to a lack of natural and empirical data on the influence of phenotypic adaptation on range shifts of marine species, we provide a general conceptual model for understanding population responses to climate change that incorporates plasticity and adaptation to environmental change in marine ecosystems. We use this conceptual model to help inform where within the geographical range each mechanism will probably operate most strongly and explore the supporting evidence in species. We then expand the discussion from a single-species perspective to community-level responses and use the conceptual model to visualize and guide research into the important yet poorly understood processes of plasticity and adaptation. This article is part of the theme issue 'The role of plasticity in phenotypic adaptation to rapid environmental change'.


Assuntos
Adaptação Fisiológica , Organismos Aquáticos/fisiologia , Ecossistema , Geografia , Modelos Biológicos , Oceanos e Mares
10.
PLoS One ; 14(1): e0210220, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30682047

RESUMO

Habitat forming 'ecosystem engineers' such as kelp species create complex habitats that support biodiverse and productive communities. Studies of the resilience and stability of ecosystem engineers have typically focussed on the role of external factors such as disturbance. However, their population dynamics are also likely to be influenced by internal processes, such that the environmental modifications caused by engineer species feedback to affect their own demography (e.g. recruitment, survivorship). In numerous regions globally, kelp forests are declining and experiencing reductions in patch size and kelp density. To explore how resilience and stability of kelp habitats is influenced by this habitat degradation, we created an array of patch reefs of various sizes and supporting adult Ecklonia radiata kelp transplanted at different densities. This enabled testing of how sub-canopy abiotic conditions change with reductions in patch size and adult kelp density, and how this influenced demographic processes of microscopic and macroscopic juvenile kelp. We found that ecosystem engineering by adult E. radiata modified the environment to reduce sub-canopy water flow, sedimentation, and irradiance. However, the capacity of adult kelp canopy to engineer abiotic change was dependent on patch size, and to a lesser extent, kelp density. Reductions in patch size and kelp density also impaired the recruitment, growth and survivorship of microscopic and macroscopic juvenile E. radiata, and even after the provisioning of established juveniles, demographic processes were impaired in the absence of sufficient adult kelp. These results are consistent with the hypothesis that ecosystem engineering by adult E. radiata facilitates development of juvenile conspecifics. Habitat degradation seems to impair the ability of E. radiata to engineer abiotic change, causing breakdown of positive intraspecific feedback and collapse of demographic functions, and overall, leading to reductions in ecosystem stability and resilience well before local extirpation.


Assuntos
Ecossistema , Kelp/fisiologia , Alga Marinha/fisiologia , Monitoramento Ambiental , Poluição Ambiental , Florestas , Humanos , Kelp/crescimento & desenvolvimento , Água do Mar , Urbanização
11.
J Phycol ; 55(2): 380-392, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30506918

RESUMO

Temperate kelp forests (Laminarians) are threatened by temperature stress due to ocean warming and photoinhibition due to increased light associated with canopy loss. However, the potential for evolutionary adaptation in kelp to rapid climate change is not well known. This study examined family-level variation in physiological and photosynthetic traits in the early life-cycle stages of the ecologically important Australasian kelp Ecklonia radiata and the response of E. radiata families to different temperature and light environments using a family × environment design. There was strong family-level variation in traits relating to morphology (surface area measures, branch length, branch count) and photosynthetic performance (Fv /Fm ) in both haploid (gametophyte) and diploid (sporophyte) stages of the life-cycle. Additionally, the presence of family × environment interactions showed that offspring from different families respond differently to temperature and light in the branch length of male gametophytes and oogonia surface area of female gametophytes. Negative responses to high temperatures were stronger for females vs. males. Our findings suggest E. radiata may be able to respond adaptively to climate change but studies partitioning the narrow vs. broad sense components of heritable variation are needed to establish the evolutionary potential of E. radiata to adapt under climate change.


Assuntos
Kelp , Aclimatação , Animais , Mudança Climática , Ecossistema , Feminino , Estágios do Ciclo de Vida , Masculino
12.
Nat Ecol Evol ; 2(1): 71-80, 2018 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-29230028

RESUMO

Most seafloor communities at depths below the photosynthesis zone rely on food that sinks through the water column. However, the nature and strength of this pelagic-benthic coupling and its influence on the structure and diversity of seafloor communities is unclear, especially around Antarctica where ecological data are sparse. Here we show that the strength of pelagic-benthic coupling along the East Antarctic shelf depends on both physical processes and the types of benthic organisms considered. In an approach based on modelling food availability, we combine remotely sensed sea-surface chlorophyll-a, a regional ocean model and diatom abundances from sediment grabs with particle tracking and show that fluctuating seabed currents are crucial in the redistribution of surface productivity at the seafloor. The estimated availability of suspended food near the seafloor correlates strongly with the abundance of benthic suspension feeders, while the deposition of food particles correlates with decreasing suspension feeder richness and more abundant deposit feeders. The modelling framework, which can be modified for other regions, has broad applications in conservation and management, as it enables spatial predictions of key components of seafloor biodiversity over vast regions around Antarctica.


Assuntos
Biodiversidade , Cadeia Alimentar , Invertebrados/fisiologia , Animais , Regiões Antárticas , Organismos Aquáticos/fisiologia , Diatomáceas , Modelos Biológicos , Oceanos e Mares , Água do Mar/química
13.
PLoS One ; 12(4): e0174855, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28445546

RESUMO

Coral-algal phase shifts in which coral cover declines to low levels and is replaced by algae have often been documented on coral reefs worldwide. This has motivated coral reef management responses that include restriction and regulation of fishing, e.g. herbivorous fish species. However, there is evidence that eutrophication and sedimentation can be at least as important as a reduction in herbivory in causing phase shifts. These threats arise from coastal development leading to increased nutrient and sediment loads, which stimulate algal growth and negatively impact corals respectively. Here, we first present results of a dynamic process-based model demonstrating that in addition to overharvesting of herbivorous fish, bottom-up processes have the potential to precipitate coral-algal phase shifts on Mesoamerican reefs. We then provide an empirical example that exemplifies this on coral reefs off Mahahual in Mexico, where a shift from coral to algal dominance occurred over 14 years, during which there was little change in herbivore biomass but considerable development of tourist infrastructure. Our results indicate that coastal development can compromise the resilience of coral reefs and that watershed and coastal zone management together with the maintenance of functional levels of fish herbivory are critical for the persistence of coral reefs in Mesoamerica.


Assuntos
Antozoários/crescimento & desenvolvimento , Peixes/fisiologia , Microalgas/crescimento & desenvolvimento , Animais , Biomassa , Recifes de Corais , Ecossistema , México , Dinâmica Populacional
14.
J Phys Condens Matter ; 29(6): 065801, 2017 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-28002057

RESUMO

Magnetic ordering temperatures in rare earth metal samarium (Sm) have been studied using an ultrasensitive electrical transport measurement technique in a designer diamond anvil cell to high-pressure up to 47 GPa and low-temperature to 10 K. The two magnetic transitions at 106 K and 14 K in the α-Sm phase, attributed to antiferromagnetic ordering on hexagonal and cubic layers respectively, collapse in to one magnetic transition near 10 GPa when Sm assumes a double hexagonal close packed (dhcp) phase. On further increase in pressure above 34 GPa, the magnetic transitions split again as Sm adopts a hexagonal-hP3 structure indicating different magnetic transition temperatures for different crystallographic sites. A model for magnetic ordering for the hexagonal-hP3 phase in samarium has been proposed based on the experimental data. The magnetic transition temperatures closely follow the crystallographic symmetry during α-Sm → dhcp → fcc/dist.fcc → hP3 structure sequence at high-pressures and low-temperatures.

15.
PLoS One ; 11(12): e0168333, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-28030596

RESUMO

Shifts from productive kelp beds to impoverished sea urchin barrens occur globally and represent a wholesale change to the ecology of sub-tidal temperate reefs. Although the theory of shifts between alternative stable states is well advanced, there are few field studies detailing the dynamics of these kinds of transitions. In this study, sea urchin herbivory (a 'top-down' driver of ecosystems) was manipulated over 12 months to estimate (1) the sea urchin density at which kelp beds collapse to sea urchin barrens, and (2) the minimum sea urchin density required to maintain urchin barrens on experimental reefs in the urbanised Port Phillip Bay, Australia. In parallel, the role of one of the 'bottom-up' drivers of ecosystem structure was examined by (3) manipulating local nutrient levels and thus attempting to alter primary production on the experimental reefs. It was found that densities of 8 or more urchins m-2 (≥ 427 g m-2 biomass) lead to complete overgrazing of kelp beds while kelp bed recovery occurred when densities were reduced to ≤ 4 urchins m-2 (≤ 213 g m-2 biomass). This experiment provided further insight into the dynamics of transition between urchin barrens and kelp beds by exploring possible tipping-points which in this system can be found between 4 and 8 urchins m-2 (213 and 427 g m-2 respectively). Local enhancement of nutrient loading did not change the urchin density required for overgrazing or kelp bed recovery, as algal growth was not affected by nutrient enhancement.


Assuntos
Recifes de Corais , Ecossistema , Cadeia Alimentar , Fenômenos Fisiológicos da Nutrição , Ouriços-do-Mar/fisiologia , Animais , Austrália , Biomassa , Dinâmica Populacional
16.
Proc Natl Acad Sci U S A ; 113(48): 13785-13790, 2016 11 29.
Artigo em Inglês | MEDLINE | ID: mdl-27849580

RESUMO

Kelp forests (Order Laminariales) form key biogenic habitats in coastal regions of temperate and Arctic seas worldwide, providing ecosystem services valued in the range of billions of dollars annually. Although local evidence suggests that kelp forests are increasingly threatened by a variety of stressors, no comprehensive global analysis of change in kelp abundances currently exists. Here, we build and analyze a global database of kelp time series spanning the past half-century to assess regional and global trends in kelp abundances. We detected a high degree of geographic variation in trends, with regional variability in the direction and magnitude of change far exceeding a small global average decline (instantaneous rate of change = -0.018 y-1). Our analysis identified declines in 38% of ecoregions for which there are data (-0.015 to -0.18 y-1), increases in 27% of ecoregions (0.015 to 0.11 y-1), and no detectable change in 35% of ecoregions. These spatially variable trajectories reflected regional differences in the drivers of change, uncertainty in some regions owing to poor spatial and temporal data coverage, and the dynamic nature of kelp populations. We conclude that although global drivers could be affecting kelp forests at multiple scales, local stressors and regional variation in the effects of these drivers dominate kelp dynamics, in contrast to many other marine and terrestrial foundation species.


Assuntos
Ecossistema , Florestas , Kelp/crescimento & desenvolvimento , Regiões Árticas , Mudança Climática , Oceanos e Mares
17.
Sci Rep ; 6: 26036, 2016 05 27.
Artigo em Inglês | MEDLINE | ID: mdl-27229624

RESUMO

Ocean acidification (OA) is the reduction in seawater pH due to the absorption of human-released CO2 by the world's oceans. The average surface oceanic pH is predicted to decline by 0.4 units by 2100. However, kelp metabolically modifies seawater pH via photosynthesis and respiration in some temperate coastal systems, resulting in daily pH fluctuations of up to ±0.45 units. It is unknown how these fluctuations in pH influence the growth and physiology of the kelp, or how this might change with OA. In laboratory experiments that mimicked the most extreme pH fluctuations measured within beds of the canopy-forming kelp Ecklonia radiata in Tasmania, the growth and photosynthetic rates of juvenile E. radiata were greater under fluctuating pH (8.4 in the day, 7.8 at night) than in static pH treatments (8.4, 8.1, 7.8). However, pH fluctuations had no effect on growth rates and a negative effect on photosynthesis when the mean pH of each treatment was reduced by 0.3 units. Currently, pH fluctuations have a positive effect on E. radiata but this effect could be reversed in the future under OA, which is likely to impact the future ecological dynamics and productivity of habitats dominated by E. radiata.


Assuntos
Dióxido de Carbono/química , Oceanos e Mares , Phaeophyceae/fisiologia , Água do Mar/química , Processos de Crescimento Celular , Mudança Climática , Ecossistema , Concentração de Íons de Hidrogênio , Biologia Marinha , Fotossíntese , Tasmânia
18.
PLoS One ; 10(2): e0118390, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25693066

RESUMO

Despite the significance of marine habitat-forming organisms, little is known about their large-scale distribution and abundance in deeper waters, where they are difficult to access. Such information is necessary to develop sound conservation and management strategies. Kelps are main habitat-formers in temperate reefs worldwide; however, these habitats are highly sensitive to environmental change. The kelp Ecklonia radiate is the major habitat-forming organism on subtidal reefs in temperate Australia. Here, we provide large-scale ecological data encompassing the latitudinal distribution along the continent of these kelp forests, which is a necessary first step towards quantitative inferences about the effects of climatic change and other stressors on these valuable habitats. We used the Autonomous Underwater Vehicle (AUV) facility of Australia's Integrated Marine Observing System (IMOS) to survey 157,000 m2 of seabed, of which ca 13,000 m2 were used to quantify kelp covers at multiple spatial scales (10-100 m to 100-1,000 km) and depths (15-60 m) across several regions ca 2-6° latitude apart along the East and West coast of Australia. We investigated the large-scale geographic variation in distribution and abundance of deep-water kelp (>15 m depth) and their relationships with physical variables. Kelp cover generally increased with latitude despite great variability at smaller spatial scales. Maximum depth of kelp occurrence was 40-50 m. Kelp latitudinal distribution along the continent was most strongly related to water temperature and substratum availability. This extensive survey data, coupled with ongoing AUV missions, will allow for the detection of long-term shifts in the distribution and abundance of habitat-forming kelp and the organisms they support on a continental scale, and provide information necessary for successful implementation and management of conservation reserves.


Assuntos
Kelp/fisiologia , Água do Mar/análise , Adaptação Biológica , Austrália , Mudança Climática , Ecossistema , Biologia Marinha , População
19.
J Phycol ; 51(5): 896-909, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26986886

RESUMO

Southeastern Australian waters are warming at nearly four times the global average rate (~0.7°C · century(-1) ) driven by strengthening incursions of the warm oligotrophic East Australian Current. The growth rate hypothesis (GRH) predicts that nutrient depletion will impact more severely on seaweeds at high latitudes with compressed growth seasons. This study investigates the effects of temperature and nutrients on the ecophysiology of the habitat-forming seaweed Phyllospora comosa in a laboratory experiment using temperature (12°C, 17°C, 22°C) and nutrient (0.5, 1.0, 3.0 µM NO3 (-) ) scenarios representative of observed variation among geographic regions. Changes in growth, photosynthetic characteristics (via chlorophyll fluorescence), pigment content, tissue chemistry (δ(13) C, % C, % N, C:N) and nucleic acid characteristics (absolute RNA and DNA, RNA:DNA ratios) were determined in seaweeds derived from cool, high-latitude and warm, low-latitude portions of the species' range. Performance of P. comosa was unaffected by nitrate availability but was strongly temperature-dependent, with photosynthetic efficiency, growth, and survival significantly impaired at 22°C. While some physiological processes (photosynthesis, nucleic acid, and accessory pigment synthesis) responded rapidly to temperature, others (C/N dynamics, carbon concentrating processes) were largely invariant and biogeographic variation in these characteristics may only occur through genetic adaptation. No link was detected between nutrient availability, RNA synthesis and growth, and the GRH was not supported in this species. While P. comosa at high latitudes may be less susceptible to oligotrophy than predicted by the GRH, warming water temperatures will have deleterious effects on this species across its range unless rapid adaptation is possible.

20.
PLoS One ; 8(11): e80137, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24260347

RESUMO

Climate change has emerged as a principal threat to coral reefs, and is expected to exacerbate coral reef degradation caused by more localised stressors. Management of local stressors is widely advocated to bolster coral reef resilience, but the extent to which management of local stressors might affect future trajectories of reef state remains unclear. This is in part because of limited understanding of the cumulative impact of multiple stressors. Models are ideal tools to aid understanding of future reef state under alternative management and climatic scenarios, but to date few have been sufficiently developed to be useful as decision support tools for local management of coral reefs subject to multiple stressors. We used a simulation model of coral reefs to investigate the extent to which the management of local stressors (namely poor water quality and fishing) might influence future reef state under varying climatic scenarios relating to coral bleaching. We parameterised the model for Bolinao, the Philippines, and explored how simulation modelling can be used to provide decision support for local management. We found that management of water quality, and to a lesser extent fishing, can have a significant impact on future reef state, including coral recovery following bleaching-induced mortality. The stressors we examined interacted antagonistically to affect reef state, highlighting the importance of considering the combined impact of multiple stressors rather than considering them individually. Further, by providing explicit guidance for management of Bolinao's reef system, such as which course of management action will most likely to be effective over what time scales and at which sites, we demonstrated the utility of simulation models for supporting management. Aside from providing explicit guidance for management of Bolinao's reef system, our study offers insights which could inform reef management more broadly, as well as general understanding of reef systems.


Assuntos
Antozoários/fisiologia , Mudança Climática , Clima , Recifes de Corais , Monitoramento Ambiental , Estresse Fisiológico/fisiologia , Animais , Peixes , Modelos Teóricos , Qualidade da Água
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA